您的位置:首页 > 技术文章 >
磁保持继电器的结构、优点、作用及正确使用时

2019-04-01

磁保持继电器是一种电子控制器件,它具有控制系统(又称输入回路)和被控制系统(又称输出回路),通常应用于自动控制电路中,它实际上是用较小的电流去控制较大电流的一种“自动开关”。故在电路中起着自动调节、安全保护、转换电路等作用。磁保持继电器目前在市场上的发展前景广阔,在市场上应用非常广泛,是工业通用继电器作为最常用的继电器类型,广泛应用于国民经济的各个领域。包括建筑、交通、能源、工业等都有安全、时间、监控继电器产品的应用,凡是有自动化控制的领域继电器就必不可少,受到用户的青睐。下面贤集网小编来为大家介绍磁保持继电器的结构、优点、作用、正确使用时的注意事项、测试方法、触点形式、选用要点。一起来看看吧!

磁保持继电器的结构、优点、作用及正确使用时的注意事项

磁保持继电器的结构

磁保持继电器分为两层,上层为电磁系统,下层为接触系统,电磁系统采用扁平直动式磁保持磁路系统,其包括磁铁、线圈、衔铁、铁芯、安装板,磁铁设于安装板中央,磁铁两侧安装有线圈,线圈上方设有U形铁芯,衔铁处于铁芯之间相互配合形成环形结构,进而可以由磁场控制工作。该安装板的两端位于铁芯U形底的旁边还安装有纯铁板,防外磁场干扰的作用。

磁保持继电器的结构、优点、作用及正确使用时的注意事项

磁保持继电器的优点

1、具有可靠性高,磁保持继电器由于严格选用了军品级的元器件,使产品的可靠性有较大提高,对所有电连接的接点采用坚固件连接,磁保持继电器工作电源采用独立的供电方式,传磁保持继电器的各种输出信号都是经过隔离变换,互不干扰,与各种仪器、仪表连接的电缆选用双屏蔽电缆,只要一端可靠接地,就能够有效地抑制线路引入的干扰。

2、是磁保持继电器可以保护多种起动条件的电动机,具有很高的动作可靠性,如电动机过载与断相保护、接地保护,可实现中央计算机集中控制,提高了配电系统自动化程度,使配电、控制系统调度和维护达到新水平。

3、生产的磁保持继电器是在全电流定律的基础上采用二级温度自动补偿技术及最优化电路结构设计技术,磁路中按中心及轴对称的原则,选用了最新型的材料和工艺技术,保证了产品在实际应用中的理论计算精度要求。采用三级差动放大电路,消除了因霍尔元件输出电阻大于运放输入内阻而产生的误差,使采样值不失真的反映出来,达到设计要求。

4、生产的磁保持继电器是按照对称性原则,将闭合磁路内的通道气隙以偶数倍均匀分布,对霍尔件的各项技术参数严格配对,采用了独特的去剩磁电路,提高了产品抗外磁干扰能力,采用二级温度自动补偿技术,使产品不受外界环境温度的影响而发生偏移量变化。采用全封闭防腐防尘措施但不封死气隙中的霍尔件,是为了避免万一某一个霍尔件损坏而不能更换,即使在电路上免强调整出一个虚假值但完全失去对称性原则,从而无法保证偏芯误差所带来的影响。


磁保持继电器的作用

1、扩大控制范围。例如,多触点继电器控制信号达到某一定值时,可以按触点组的不同形式,同时换接、开断、接通多路电路。

2、放大。例如,灵敏型继电器、中间继电器等,用一个很微小的控制量,可以控制很大功率的电路。

3、综合信号。例如,当多个控制信号按规定的形式输入多绕组继电器时,经过比较综合,达到预定的控制效果。

4、自动、遥控、监测。例如,自动装置上的继电器与其他电器一起,可以组成程序控制线路,从而实现自动化运行。


磁保持继电器的正确使用时的注意事项

1、线圈使用电压

线圈使用电压在设计上最好按额定电压选择,若不能,可参考温升曲线选择。使用任何小于额定工作电压的线圈电压将会影响继电器的工作。注意线圈工作电压是指加到线圈引出端之间的电压,特别是用放大电路来激励线圈务必保证线圈两个引出端间的电压值。反之超过最高额定工作电压时也会影响产品性能,过高的工作电压会使线圈温升过高,特别是在高温下,温升过高会使绝缘材料受到损伤,也会影响到继电器的工作安全。对磁保持继电器,激励(或复归)脉宽应不小于吸合(或复归)时间的 3 倍,否则产品会处于中位状态。用固态器件来激励线圈时,其器件耐压至少在 80V 以上,且漏电流要足够小,以确保继电器的释放。

磁保持继电器的结构、优点、作用及正确使用时的注意事项

2、瞬态抑制

继电器线圈断电瞬间,线圈上可产生高于线圈额定工作电压值 30 倍以上的反峰电压,对电子线路有极大的危害,通常采用并联瞬态抑制(又叫削峰)二极管或电阻的方法加以抑制,使反峰电压不超过 50V ,但并联二极管会延长继电器的释放时间 3~5 倍。当释放时间要求高时,可在二极管一端串接一个合适的电阻。

激励电源:在 110% 额定电流下,电源调整率 ≤ 10% (或输出阻抗 <5% 的线圈阻抗),直流电源的波纹电压应 <5% 。交流波形为正弦波,波形系数应在 0.95~1.25 之间,波形失真应在± 10% 以内,频率变化应在± 1Hz 或规定频率的± 1% 之内(取较大值)。其输出功率不小于线圈功耗。

3、多个继电器的并联和串联供电

多个继电器并联供电时,反峰电压高(即电感大)的继电器会向反峰电压低的继电器放电,其释放时间会延长,因此最好每个继电器分别控制后再并联才能消除相互影响。

不同线圈电阻和功耗的继电器不要串联供电使用,否则串联回路中线圈电流大的继电器不能可靠工作。只有同规格型号的继电器可以串联供电,但反峰电压会提高,应给予抑制。可以按分压比串联电阻来承受供电电压高出继电器的线圈额定电压的那部分电压。

磁保持继电器的结构、优点、作用及正确使用时的注意事项

4、触点负载

加到触点上的负载应符合触点的额定负载和性质,不按额定负载大小(或范围)和性质施加负载往往容易出现问题。只适合直流负载的产品不应用于交流场合。能可靠切换 10A 负载的继电器,在低电平负载(小于 10 m A × 6A )或干电路下不一定能可靠工作。能切换单相交流电源的继电器不一定适合切换两个不同步的单相交流负载;只规定切换交流 50Hz (或 60Hz )的产品不应用来切换 400Hz 的交流负载。

5、触点并联和串联

触点并联使用不能提高其负载电流,因为继电器多组触点动作的绝对不同时性,即仍然是一组触点在切换提高后的负载,很容易使触点损坏而不接触或熔焊而不能断开。触点并联对“断”失误可以降低失效率,但对“粘”失误则相反。由于触点失误以“断”失误为主要失效模式,故并联对提高可靠性应予肯定,可使用于设备的关键部位。但使用电压不要高于线圈最大工作电压,也不要低于额定电压的 90% ,否则会危及线圈寿命和使用可靠性。触点串联能够提高其负载电压 ,提高的倍数即为串联触点的组数。触点串联对“粘”失误可以提高其可靠性,但对“断”失误则相反。总之,利用冗余技术来提高触点工作可靠性时,务必注意负载性质、大小及失效模式。

6、切换速率

继电器切换速率应不高于其 10 倍动作时间和释放时间之和的倒数(次 /s ),否则继电器触点不能稳定接通。磁保持应在继电器技术标准规定的脉冲宽度下使用,否则有可能损坏线圈。


磁保持继电器的测试方法

1、测触点电阻

用万能表的电阻档,测量常闭触点与动点电阻,其阻值应为0,(用更加精确方式可测得触点阻值在100毫欧以内);而常开触点与动点的阻值就为无穷大。由此可以区别出那个是常闭触点,那个是常开触点。

2、测线圈电阻

可用万能表R×10Ω档测量继电器线圈的阻值,从而判断该线圈是否存在着开路现象。

3、吸合电压、电流

找来可调稳压电源和电流表,给继电器输入一组电压,且在供电回路中串入电流表进行监测。慢慢调高电源电压,听到继电器吸合声时,记下该吸合电压和吸合电流。为求准确,可以试多几次而求平均值。

4、释放电压、电流

也是像上述那样连接测试,当继电器发生吸合后,再逐渐降低供电电压,当听到继电器再次发生释放声音时,记下此时的电压和电流,亦可尝试多几次而取得平均的释放电压和释放电流。一般情况下,继电器的释放电压约在吸合电压的10~50%,如果释放电压太小(小于1/10的吸合电压),则不能正常使用了,这样会对电路的稳定性造成威胁,工作不可靠。


磁保持继电器的触点形式

继电器线圈在电路中用一个长方框符号表示,如果继电器有两个线圈,就画两个并列的长方框。同时在长方框内或长方框旁标上继电器的文字符号"J"。继电器的触点有两种表示方法:一种是把它们直接画在长方框一侧,这种表示法较为直观。另一种是按照电路连接的需要,把各个触点分别画到各自的控制电路中,通常在同一继电器的触点与线圈旁分别标注上相同的文字符号,并将触点组编上号码,以示区别。

磁保持继电器的结构、优点、作用及正确使用时的注意事项

磁保持继电器的选用要点

1、先了解必要的条件

①控制电路的电源电压,能提供的最大电流;

②被控制电路中的电压和电流;

③被控电路需要几组、什么形式的触点。选用继电器时,一般控制电路的电源电压可作为选用的依据。控制电路应能给继电器提供足够的工作电流,否则继电器吸合是不稳定的。

2、查阅有关资料确定使用条件后,可查找相关资料,找出需要的继电器的型号和规格号。若手头已有继电器,可依据资料核对是否可以利用。最后考虑尺寸是否合适。

3、注意器具的容积。若是用于一般用电器,除考虑机箱容积外,小型继电器主要考虑电路板安装布局。对于小型电器,如玩具、遥控装置则应选用超小型继电器产品。


上述是贤集网小编为大家讲解的磁保持继电器的结构、优点、作用、正确使用时的注意事项、测试方法、触点形式、选用要点。希望这些知识能够帮助到大家!现如今,随着电能表的发展,磁保持继电器已经成为电能表中不可缺少的重要部件,为配合电能表的安装及使用,要求其具有体积小,负载能力强,输入与输出隔离度高,功耗小,温升低等特点,其主要技术指标也因为不同环境中的使用,对磁保持继电器的置位,复位电压,接触电路,介质耐压,线圈功耗,冲击电流,引出端温升有着较高的要求,保证其可靠性和安全性,这就意味着磁保持继电器生产工艺,材料,工装等方面的质量控制。


(责任编辑:admin)


查看更多 >>

推荐新闻